
A Method for the Unified Representation           
of Multispectral Images                            

with Different Number of Bands  
Satoshi Nambu*, Toshio Uchiyama*,  

Masahiro Yamaguchi*,**, Hideaki Haneishi*,***, and Nagaaki Ohyama*,**  
*Akasaka Natural Vision Research Center, TAO of Japan, Tokyo, Japan  

**Tokyo Institute of Technology, Kanagawa, Japan  
***Chiba University, Chiba, Japan  

 

 
Abstract  

We propose a simple but useful method to represent 
multispectral images with different number of bands that 
are captured by different kind of multispectral cameras 
(MSC). It is necessary to represent them in a common 
space with sufficient accuracy of spectral information 
when consider-ing editing, such as blending and accurate 
color reproduce-tion under an arbitrary illuminant. To 
solve the problem, we utilize the idea of a virtual 
multispectral camera (VMSC) that transforms real 
multispectral images into virtual multispectral images. We 
design the sensitivities of the VMSC properly, and our 
unified representation can avoid some disadvantages of 
conventional PCA based methods. We experimentally 
demonstrate the color reproduction accuracy of our method 
by comparing with PCA based methods under modified 
versions of objects to be captured, and the numbers of both 
MSC and VMSC bands.  

Introduction  

The recent progress in multispectral image processing 
technologies has enabled us to reproduce the color of 
objects accurately under an arbitrary illuminant.1-6 This 
advantage could make it possible to composite 
multispectral images without incongruity, even if those 
images are captured under different illuminations. We are 
intending to edit multispectral still images and video as it 
is done with conventional RGB images and video to create 
attractive video products with accurate color reproduction.  

However, there exist many kinds of MSCs that 
produce multispectral images with different number of 
bands, and there is not yet a simple way of handling them 
together. Therefore, when considering editing, such as 
blending two or more video with different number of bands, 
we need a method to represent them in a common space. In 
addition, we want a simple representation of the edited 
result especially for real-time video processing at the 
moment of displaying.  

Colorimetric representation, such as CIE XYZ-values, 
is well known as a common space, but it is unusable in the 
case when capturing and observing illuminations are 
different. We need to find out a method to represent sets of 
multispectral images with different number of bands, in a 
common space with sufficient accuracy of spectral 
information.  

B. Hill3 also pointed out the same problem in building 
color reproduction open system architectures. In which, 
assuming arbitrary numbers of bands for both input and 
output devices, input multispectral images with a certain 
number of bands have to be encoded in a generalized form 
for transportation to output devices.  

One method to solve the problem is the expansion of 
spectral information estimated from each multispectral 
image, into orthonormal basis functions that are derived 
from principal component analysis (PCA) applied to a set 
of samples. With this method, all multispectral images are 
represented as coefficient images of the same set of basis 
functions.  

One variation of this is called “compatible to the 
conventional tristimulus model” method in which the first 
three coefficients represent tristimulus values of a standard 
color space referred to a standard illuminant.3,4 Another is 
weighted Karhunen-Loeve transform (WKLT) based on 
human visual sensitivities, and that is designed to minimize 
the color difference between the original and the 
reproduction.5 

Those PCA based methods theoretically give one of 
the best results in a sense of minimizing square error. 
However, there exist some disadvantages of them. One is, 
since the basis functions depend on the set of samples, the 
best set of basis functions for one group might not be good 
enough for another group. We consider any kind of 
multispectral video as input. Therefore, it is impossible to 
get perfect basis functions of PCA for all. In addition, they 
may cause large differences in dynamic ranges of basis 
functions, and may cause unwanted negative pixel values 
for practical editing system software.  
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König et al. [6] reported significant simulation results 
by comparing color estimation accuracy using 
multispectral images from a VMSC using between 6 and 
16 bands. The results suggested the possibility of keeping 
mean ∆Eab error under 0.5 by using more than 10 bands. In 
this way, representation of spectral information as output 
images of a VMSC with such a small number of bands is 
reasonable for accurate color reproduction.  

In this paper, we propose a simple but useful idea to 
define a VMSC with a certain number of bands (8 for 
example) that transforms real multispectral images with 
different number of bands into virtual multispectral images 
with the same number of bands for every input. We design 
our VMSC to have equal sensitivities for each band located 
at equal intervals over visible range, sensitivities are 
independent from input data. Our method can avoid the 
disadvantages of PCA based methods described above 
while keeping color reproduction accuracy.  

We experimentally demonstrate how color 
reproduction accuracy changes when images with different 
number of bands are transformed to output images of the 
defined VMSC. In addition, some experimental results 
comparing our method with conventional PCA based 
methods are also shown.  

Image model and Unified Representation of 
Multispectral Images 

In this section, we describe a formulation of the image 
model that we used, and explain the unified representation 
of multispectral images with different number of bands.  

Suppose that there exist multiple kinds of MSCs with 
different number of bands. Let vi be a multispectral image 
captured by the i-th camera with Ni bands, and r be the 
spectral reflectance of the object represented in an M-
dimensional space. Let Si be an Ni x M matrix whose 
column vectors represent the sensitivity of the k-th band of 
the i-th camera, and L be an M x M diagonal matrix whose 
diagonal elements represent the spectral radiance of the 
capturing illuminant. We can then write expression for vi in 
vector representation as follows,  

rFv ii = ,                                         (1) 

where Fi (=SiL) is a linear system matrix with size of Ni x 
M. Note that each multispectral image vi has a different 
number of bands Ni, while the spectral reflectance r is 
represented in the same M-dimensional space. Our problem 
is to find out a method to represent these vi with different 
number of bands in a common space to handle them 
together. We will call this kind of representation that has 
only one form for all multispectral images as “unified 
representation”.  

It is known that we can get the estimated reflectance 
ir̂  from each vi by using Wiener estimation:  

iii vGr =ˆ ,     (2) 
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where Rr is the correlation matrix of r, which is related to 
a priori knowledge about the reflectance r of objects in the 
image for solving the inverse problem. Gi is a matrix with 
size of M x Ni.  

Since ir̂  in Eq. (2) is represented in the same 
dimensional space for all i, this could be considered as one 
of the unified representations we demand. However, ir̂  use 
in general a so high dimensional space to approximate the 
continuous value of the spectral reflectance, that is not 
appropriate for practical applications in the sense of 
amounts of data. Therefore, we have to encode ir̂  to 
reduce amounts of data. At that time, we need to concern 
about efficiency, accuracy and usefulness of this unified 
representation.  

Virtual Multispectral Camera  

Before explaining our idea to define a unified 
representation of multispectral images, we recall PCA 
based methods as a comparison.  

By using a PCA method basically, the estimated 
spectral reflectance ir̂  can be encoded into a coefficient 
image xi in a lower dimensional space. This xi theoretically 
gives one of the best representations in the sense of 
minimizing square error between the original ir̂  and the 
one that is recalculated from xi.  

However, since the basis functions of PCA depend on 
the set of samples, the best set of basis functions for one 
group might not be good enough for another group. 
Therefore, the optimal accuracy is only available for the 
images from the sample set. In addition, PCA based 
methods may cause large differences in dynamic ranges of 
basis functions, and may cause unwanted negative pixel 
values for practical editing system software. This might be 
a problem for usefulness.  

Our method, on the other hand, can avoid these 
disadvantages of PCA based methods described above. The 
idea relies on the simulation results reported by König et al. 
[6], which suggested the reliable ability of a multispectral 
image from a VMSC with a relative number of bands to 
reproduce accurate color. A VMSC here means a virtual 
and unreal device with virtual spectral sensitivities, and 
that can transform spectral radiant distribution into a 
VMSC response. We utilize this VMSC to represent the 
estimated spectral reflectance ir̂ . We design this camera 
properly to have equal sensitivities for each band located at 
equal intervals over visible range of wavelength in order to 
be independent from input data, and not to produce 
negative pixel values. Further details are explained below.  

First of all, using Eq. (1) and (2), we can transform a 
real multispectral image vi with arbitrary number of bands 
or the estimated spectral reflectance ir̂  to a virtual 
multispectral image iv~  as,  

iivmscivmsci vGFrFv == ˆ~ ,                             (4) 
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where Fvmsc is a matrix with size of Nvmsc x M that defines the 
properties of this transformation. Eq. (4) defines our 
VMSC. Since there are no differences between the form of 

iv~  and vi, we can estimate spectral reflectance ir̂̂  again 
from iv~  using Eq. (2) as,  

ivmsci vGr ~ˆ̂ = ,                                      (5) 

where Gvmsc is a matrix that corresponds to Gi in Eq. (2), but 
that is independent from the linear system matrix Fi. In 
addition, any applications for real multispectral images vi 
can be applied to virtual multispectral images iv~ .  

Now, let us think about the design of the matrix Fvmsc, 
which is the key of our method. We should design Fvmsc 
properly in the sense of efficiency, accuracy and usefulness. 
We take a different approach from PCA based methods to 
avoid the explained disadvantages. In order to cover all 
kind of objects to be captured, we design our VMSC to be 
not optimized for particular sample data. To realize this, 
we used gaussian curves for definition of the k-th spectral 
sensitivity as,  
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where λ is wavelength and σ, µ0, ∆µ are constants, the 
capturing illuminant is represented by a unit matrix, this 
does not cause negative pixel values. An example of 
spectral sensitivities of an 8-band VMSC of Eq. (6) is 
shown in Fig. 1. Next, we confirm the color reproduction 
accuracy of our method through experiments.  
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Figure 1. An example of spectral sensitivities of a VMSC 

Experiments 

We evaluated the color reproduction accuracy of our 
method under modified versions of objects to be captured, 
and the numbers of MSC bands and VMSC bands by 
making simulations. The object data we used for the 
simulations were sets of spectral reflectances of the Gretag 
Macbeth Color Checker measured by a spectroradiometer 
(Topcon SR-2), the natural objects measured by Vhrel, 
Gershon and Iwan,7 and flowers, leaves, and paints from 

the SOCS (Standard Object Colour Spectra database for 
colour reproduction evaluation).8 As real input devices, we 
used spectral sensitivities of real 3 and 6-band 
multispectral video cameras and a 16-band multispectral 
still camera.1,2 The used illuminant for capturing was CIE 
D65, and the ones used for color reproduction were CIE 
D65, CIE A, CoolWhite, and TL84. We used Eq. (6) as 
definition of our VMSC with constant values σ, µ0 and 
∆µ adjusted to cover the range between 380 nm to 780 nm 
at equal intervals. The numbers of VMSC bands were 4, 6, 
8, and 10.  

As seen in Eq. (1) to (5), there are three different types 
of reflectances. Which are A: the very original spectral 
reflectance r of objects, B: the spectral reflectance ir̂  
estimated from a real multispectral image, and C: the 
spectral reflectance ir̂̂  re-estimated from a virtual 
multispectral image of the VMSC whose input is B. We 
evaluated the differences of the re-estimated reflectance ir̂̂  
against the original reflectance r to check the total system 
performance. Since there already exist estimation errors in 
the estimated reflectance ir̂ , differences of the re-estimated 
reflectance ir̂̂  against the estimated reflectance ir̂  are also 
confirmed. For evaluation of the color reproduction 
accuracy from the re-estimated spectral reflectance, we 
computed the root mean square errors (RMSE) between the 
re-estimated and the estimated reflectances, and we also 
computed the ∆Eab average color differences of the 
reproductions under the four illuminants.  

We compared our method with two kinds of PCA 
based methods, which are a normal PCA method and 
WKLT.5 The reflectance that is recalculated from the 
coefficient image of these PCA based methods corresponds 
to the re-estimated reflectance of our method. For ease of 
expression, we will use the term “re-estimate” for the both 
reflectances. Since we want to represent arbitrary multi-
spectral images in a common space, the basis functions of 
the PCA should be also common. Therefore, we derived a 
set of basis functions from the estimated reflectances of the 
mixed set of all kind of input data groups. In addition, we 
also derived sets of basis functions from each individual 
input data group for reference. We indicated them by 
“mix” and “ind” respectively in Fig. 2 to 6.  

Experiment 1 
We used the 16-band real MSC and an 8-band VMSC 

or 8-dimensional PCA based methods. The number of 
VMSC bands was chosen by the assumption that the 
maximum and average color differences of ∆Eab had to be 
under 2.0 and 0.5 respectively for both the Color Checker 
and the natural objects sets. We compared the color 
reproduction differences for various sets of objects. A 
comparison of average RMSEs for the re-estimated 
reflectance against the original reflectance is shown in Fig. 
2, and a comparison of color differences is shown in Fig 3. 
In the figures, “MSC” means the estimated reflectance 
from the real MSC, that is shown for reference to see how 
much the re-estimated reflectance of each method lost 
color information from the estimated reflectance.  
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PCA(mix) and PCA(ind) made the best results for the 
average RMSEs in Fig. 2, but results were quite worse in 
color differences in Fig. 3. To get better results of color 
reproduction, human visual sensitivities have to be 
considered. As it was expected, WKLT(mix) and 
WKLT(ind) that are based on human visual sensitivities5 
made better results on measured color differences than 
PCAs. However, our method, which is not optimized for 
the sample set, gave the best result of all the methods 
except for the leaves set. One reason for this result is that 
we used a priori knowledge of smooth reflectance in Eq. 
(5), and the experimental data actually presented smooth 
reflectance.  
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 Figure 2. Average RMSEs for various object sets 
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 Figure 3. ∆Eab average color differences for various object sets 

Experiment 2 
We used the 8-band VMSC, and the object sets of the 

Color Checker and the natural objects. We changed the 
number of input real MSC bands to see the effect on color 
differences. A comparison of the results about the 
computed average color differences of the re-estimated 
reflectance using natural objects against the original 
reflectance and the estimated reflectance respectively are 
shown in Fig. 4 and 5.  

In both Fig. 4 and 5, the performance of our method 
was equal or better than the other four methods for almost 
all cases. We will briefly explain the reason why color 
differences of the recalculated reflectance against the 
estimated reflectance of PCA(ind) and WKLT(ind) for 3 
and 6-band MSCs are zero in Fig. 5. Since the estimated 
reflectance ir̂  represented in Eq. (2) has the same or less 
rank than the number of its MSC bands, it can be 
represented by higher dimensional PCA without error. 

Experiment 3 
We used the 16-band real MSC, and the object sets of 

Color Checker and the natural objects. We changed the 
number of bands of a VMSC or dimensions of a PCA to 
see the effect on color differences. A comparison of the 
results about the computed average color differences of the 
re-estimated reflectance against the original reflectance 
using natural objects is shown in Fig. 6.  
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Figure 4. ∆Eab average color differences vs. the number of MSC 
bands   (against the original reflectance) 
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Figure 5. ∆Eab average color differences vs. the number of MSC 
bands   (against the estimated reflectance)  

 
The performance of our method was equal or better 

than the other four methods in higher than 6-dimensional 
spaces, but it was worse than WKLT(mix) and WKLT(ind) 
in 4-dimensional space. This means that our method is 
effective in a higher dimensional space where the total 
color reproduction accuracy is high.  

MSC 
Our Method 
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for Fig. 2 to 6 
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We have shown the color reproduction accuracy of our 
method through the experiments. According to the results, 
our method is not only acceptable but also produce better 
accuracy of color reproduction compared with 
conventional PCA based methods in almost all cases. This 
result suggests the remarkable effectiveness of our method 
for representing multispectral images with different 
number of bands in a unified common space. We consider 
that the reason for this result was the assumption of 
reflectance smoothness, but we will confirm it in future 
works. 
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Figure 6. ∆Eab average color differences vs. the number of VMSC 
bands or PCA dimensions 

 

References 

1. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. 
Motomura, Y. Murakami, N. Ohyama, Color image 
reproduction based on the multispectral and multiprimary 
imaging: Experimental evaluation, Proc. SPIE 4663, pg. 15. 
(2002).  

2. Annual report of Natural Vision project, 
Telecommunications Advancement Organization of Japan, 
2001  

3. B. Hill, Aspects of total multispectral image reproduction 
systems, Proc. Int. Symposium on High Accurate Color 
Reproduction and Multispectral Imaging, pg. 67. (2000)  

4. T. Keusen, W. Praefcke, Multispectral Color System with an 
Encoding Format Compatible to the Conventional 
Tristimulus Model, Proc. CIC, pg.112, (1995)  

5. Y. Murakami, H. Manabe, T. Obi, M. Yamaguchi, N. 
Ohyama, Multispectral Image Compression for Color 
Reproduction; Weighted KLT and Adaptive Quantization 
based on Visual Color Perception, Proc. CIC, pg. 68, (2001) 

6. F. König, W. Praefcke, A Multispectral Scanner, Proc. CIM, 
pg. 63, (1998)  

7. M. J. Vrhel, R. Greshon, L. S. Iwan, Measurement and 
analysis of object reflectance spectra, Color Res. and Appl., 
19, pg. 4, (1994)  

8. J. Tajima, M. Tsukada, Y. Miyake, H. Haneishi, N. Tsumura, 
M. Nakajima, Y. Azuma, T. Iga, M. Inui, N. Ohta, N. Ojima, 
S. Sanada, Development and standardization of a spectral 
characteristics data base for evaluating color reproduction in 
image input devices, Proc.SPIE 3409, pg. 42, (1998).  

Biography 

Satoshi Nambu received the M. S. degree in Information 
Engineering from Nagoya University in 1998. In the same 
year, he joined NTT DATA Corp., worked at NTT Cyber 
Solutions Laboratories and Cyber Space Laboratories from 
2000 to 2002, he is currently a researcher of Akasaka 
Natural Vision Research Center of Telecommunications 
Advancement Organization of Japan and a member of the 
Institute of Electronics, Information and Communication 
Engineering of Japan.  

 

IS&T's 2003 PICS Conference

235




